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ABSTRACT: Optimizing risk in the insurance market, particularly in reinsurance, is a major concern due to potential risks in a rapidly 

developing industry. Providing evaluation criteria for reinsurance models is crucial for insurance companies to enhance business 

performance. Risk management in reinsurance is of great significance in the insurance business and has been extensively 

researched. Many different reinsurance models can be used such as the mean criterion, the expectation-variance criterion, the 

bankruptcy probability function criterion, and the Lundberg exponent optimization criterion. This paper focuses on studying risk 

optimization in proportional reinsurance by maximizing the Lundberg exponent of the Cramer-Lundberg risk model to minimize 

the probability of bankruptcy 𝜓(𝑥). At the same time, we provide the algorithm to determine the Lundberg exponent based on 

the scaling factor, and risk optimization is evaluated accordingly. 
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I. INTRODUCTION 

Reinsurance is a crucial step in the business cycle that aims to distribute risks and ensure the survival of insurance companies and 

the insurance market. To assess the risk involved in the reinsurance model, we need to gather statistics on the company's 

insurance data, construct a distribution function for insurance payments, and establish evaluation criteria. The mathematical 

model of the reinsurance method then evaluates these criteria based on the payment distribution function, providing optimal 

parameter values. Depending on their investment portfolio, insurance companies select evaluation criteria and parameter values 

for the model to effectively manage risk.  

It is vital for insurance and reinsurance companies to maintain capital levels above a certain threshold at all times. The concept of 

bankruptcy time refers to the earliest point at which the capital falls below this threshold. The probability of this occurrence (going 

bankrupt), known as the bankruptcy probability, is a critical consideration in risk management and optimization in reinsurance. 

The goal is to find a reinsurance plan that minimizes the probability of bankruptcy. Reinsurance, therefore, serves as insurance for 

the risks that insurers must bear. It involves transferring a portion of the responsibility, along with a portion of the insurance cost, 

to another insurer through a reinsurance contract. Reinsurance is closely tied to original insurance operations, as it is built upon 

them. It provides psychological security for insurers, balances insurance services, safeguards them against major catastrophic 

incidents, and ensures financial stability. However, reinsurance also entails shifting some, if not most, of the insurance costs to 

the reinsurer. Consequently, reinsurance can significantly impact the financial indicators of insurance companies, either positively 

or negatively.  

The optimal reinsurance problem is typically not approached by directly minimizing the ruin probability itself. This is because the 

ruin probability does not have an explicit expression in most situations, even in the classical risk model. Therefore, some scholars 

choose to minimize the Lundberg upper bound of the ruin probability as an alternative value function. In such cases, a possible 

reinsurance arrangement maximizes the Lundberg exponent. In the Cramér-Lundberg risk model, the ruin probability has a simple 

exponential upper bound known as the Lundberg upper bound. Consequently, the Lundberg exponent serves as an alternative 

risk measure for determining a company's solvency capability over a long-term horizon. The optimal reinsurance problem has 

been extensively studied in terms of maximizing the Lundberg exponent over the past few decades. For instance, In the paper "On 

the maximisation of the adjustment coefficient under proportional reinsurance" Hald & Schmidli (2004) examined the optimal 

proportional reinsurance problem for an insurer using the Cramér-Lundberg model and a general renewal risk model, respectively. 
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Research has shown how to maximize the adjustment coefficient in the case of proportional reinsurance. Schmidli (2002a) 

investigated optimal excess-of-loss reinsurance under the Cramér-Lundberg model. Meng et al. (2023) investigated the multiple 

per-claim reinsurance based on maximizing the Lundberg exponent, research has shown that, based on maximization of the 

insurer's Lundberg exponent, the optimal reinsurance is formulated within a static setting, In general, these optimal strategies are 

shown to have non-piecewise linear structures, differing from conventional reinsurance strategies such as quota-share, excess-

of-loss, or linear layer reinsurance arrangements. Until now, the majority of authors have concentrated on specific forms of 

reinsurance when developing risk measurement and assessment techniques. These methods include assessment based on 

average value criteria, assessment based on variance criteria, and evaluation based on the non-bankruptcy probability function 

criterion. In this paper, we utilize an evaluation approach that focuses on maximizing the Lundberg exponent is based on a one-

parameter proportional reinsurance model 

 
II. THEORETICAL FRAMEWORK 

A. Risk measurement and assessment methods. 

In this section, we will provide a brief overview of risk assessment methods in the reinsurance model. These methods include the 

mean value criterion, the variance-expectation criterion, and the probability of non-bankruptcy function. Special was the 

maximizing of the Lundberg exponent, detailed explanations, and algorithms will be presented in the results section (Lucas et al., 

2018). 

1) Evaluation is based on average value criteria: 

The average value of the random variable 𝑋 is a real number, denoted as 𝐸(𝑋), and is determined as follows (Шон, 2005): 

If 𝑋 is a discrete random variable with probability distribution 
kk pxXP  )(  then: 











11

)()(
i

ii

i

ii pxxXPxXE  

If 𝑋 is a continuous random variable with a density function )(xfX , then: 






 dxxxfXE X )()(  

If 𝑋 is a continuous random variable with a cumulative distribution function )(xF , then: 






 dxxFXE ))(1()(  

2) Evaluation is based on variance criteria: 

The variance of the random variable 𝑋 is a real number, denoted )(XD determined: 

2))(()( XEXEXD   

Implementing the right side we have: 
2222 ))(()(]))(()(..2[)( XEXEXEXEXXEXD   

The variance of a random variable is used to characterize the degree of dispersion of the values of that random variable around 

its mean value.  

If 𝑋 is a non-negative real-valued random variable with )(XE  we have: 





0

2 )(.2)( dxxXPxXE  

In case the random variable 𝑋 has a cumulative distribution function )(xF  then we have: 



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3) Evaluation is based on the criteria of probability function of not going bankrupt: 

http://www.ijefm.co.in/


Proportional Reinsurance is based on Maximizing the Lundberg Exponent 

JEFMS, Volume 06 Issue 11 November 2023                    www.Ijefm.co.in                                                               Page 5449 

Symbol:  

)(yF
iX

,  <0 y  - Distribution function of the size of payments;  

iX ; <= )(

i

k

k Xm M , 1k  - The Kth mathematical expectation of the distribution function; )(tC  - Value of the amount 

of money collected from the policyholder during a period of time )[0,t ; 

0x  - Initial investment capital of the insurance company.  

Without loss of generality, assume )(yF
iX

 is a continuous function and 0=(0)
iXF . Thus, during its operation, the insurance 

company's capital at time t is determined as follows: 

.)(=)(
)(

1=

i

tN

i

XtCxtZ                                      (1) 

In which, )(tN  - number of times to pay in period )[0,t . We consider the classical risk series (1), or the so-called Cramér-Lundberg 

series, with the assumption that: 

The amount of money collected C(t) is determined and linear over time, that is: C(t) =  ct
,  

C > 0; 

String ...},,{ 21 XXX   - Is a random, independent, positive definite string;  

The series of intervals between times 
iT  must pay 

iX are also random, independent quantities, then 
1=  iii TT  is an 

independent and uniform distribution function;  

The cost payment process is a Poisson process with parameter  , then: ttN =)(M , tmtX )(=)( 1M . 

Thus, it is crucial for insurance companies to ensure that the capital amount )(tZ  always stays above a specific level. Without 

loss of generality, we assume this level to be zero. The objective is to identify the time of bankruptcy 0}<)({inf= 0 tZT t
, which 

is the earliest point when the capital becomes negative. If   00,)(inf  tuuZ  for all 0t , then =T . Then the 

probability function of not going bankrupt over an infinite time period )[0,  
with an initial capital x  is defined as (Centeno, 

1997): 

}][sup{=}=(0)|={=)(
)(

1

0
xcuXxZTxW
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


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This is one of the characteristics of the Cramer-Lundberg series (1). 

When 0>1mc   (condition on net profit of the insurance company) and 0=(0)
iXF , the probability function of not going 

bankrupt of the insurance company satisfies the Volterra - Cramer integral equation as follows (Buhlman, 2007): 

(0)=)()()(
0

WdssWsxK
c

xW

x

 
                                     (3) 

With )(1=)( tFtK
iX  - Called the kernel function and the right-hand side is a positive constant 0>(0) 1mcW  . 

The Volterra equation (3) always has a solution within the class of continuous nuclear functions. The solution method for the 

aforementioned equation relies on the continuous and bounded nature of the nuclear function K(t).  

For example, consider the case where the distribution function of an insurance company's payments is a simple exponential 

distribution function t

X etF
i

1)( . Then we have: 

tetK )( ; 11 m ; 0>(0)  cW  

Then equation (3) becomes: 
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Solving equation (4) using the Laplace transform method we get: 
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Transforming the Laplace inverse we get: 

  xvve
v

W
xW 


 10 1

1
)(      (5) 

Examining function )(xW , we can determine the probability of the insurance company not going bankrupt according to the 

amount of initial capital 𝑥. 
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When performing calculations, we must consider safety parameters for both the insurance company and the reinsurance 

company. The safety parameters for the insurance company and reinsurance company are denoted as   and )(  

respectively. Prior to engaging in reinsurance, the insurance premium amount is )()(1= XEc  . However, when the insurance 

company participates in reinsurance, the insurance premium amount decreases by a certain value is 

)()(1)()(1= ZEXEcY   . Before participating in reinsurance, the distribution function of the size of the insurance 

company's payments is )(yF
iX

, after the insurance company participates in reinsurance, the distribution function of the size of the 

insurance company's payments is )(yF
iY

. 

Without loss of generality, we denote the distribution function of payment sizes for the insurance company without reinsurance 

as )(yF . When participating in reinsurance, the distribution function becomes )(yFX
 and )(yFZ

represents the distribution 

function for the reinsurance company's payments. Let )(xW  be the probability of the insurance company not going bankrupt. 

Equation (3) determines the probability of non-bankruptcy for the reinsurance model, resulting in the following integral equation: 

)0()())()(
0

WdyyWyxK
c

xW

x

Y

Y

 
       (6) 

With )(1)( yFyK YY  . 

The probability equation for an insurance company's non-bankruptcy in reinsurance (6) is essentially identical to that of non-

participation (3), they differ only in the distribution function of the size of payments. The distribution function of the size of 

payments. Therefore, the solution condition and solution method of equation (6) is similar to equation (3) (Gerber, 1997). 

4) Evaluation based on Lundberg Exponent: 

From the Cramer equation: 

.)(=)(
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i

XtCxtZ 

 
With in-depth research focusing on assessing the probability of bankruptcy   in insurance and reinsurance problems, Cramer 

and Lundberg proposed the Lundberg inequality (Cani & Thonhauser, 2016): 

( ) Rxx e   

And the Lundberg approximation function: 

  xekx Rx

CL ,~)(  

where R  is called the Lundberg exponent (also known as the correlation coefficient). 

And  1lim ( )
( )

Rx
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x

X

c m
k x e

M R c



 


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
  called the Cramer-Lundberg constant. 

The Lundberg inequality is extensively utilized in both theoretical and applied research. The application of the Lundberg inequality 

reveals that the minimization of bankruptcy probability can be achieved by maximizing the Lundberg exponent (Willmost et al., 

2016). 

B. One-parameter proportional reinsurance model. 

Single-parameter proportional reinsurance is a method that divides risks proportionally to the sum insured. The reinsurer 

guarantees a percentage of each risk based on the insured amount, receives premiums, and is responsible for compensation 

according to this percentage. This means that the ratio of dividing the insurance amount is equal to the ratio of dividing the 

insurance premium, as well as the ratio of dividing compensation for losses between the ceding company and the reinsurance 

company.  

Thus we have a mathematical model of one-parameter proportional reinsurance (Pacáková, 2010):  

iii ZYX   

ii aXY 
   

 

ii XaZ )1(   

Where ),...,2,1( NiX i   is the claim amount of the risk i  and N  is the number of losses. 

iY  is the amount retained by the insurance company for risk i . 

iZ  is the amount shared by the reinsurer for risk i . 

)10(  aa  is the division ratio coefficient (parameter). 
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Assuming )(xF  is the distribution function of the size of original insurance payments of the insurance company 
iX , When an 

insurance company engages in one-parameter proportional reinsurance, the distribution function of the number of payments that 

the insurance company keeps and transfers to the reinsurer is as follows: 

)()(
a

x
FxFY   

)
1

()(
a

x
FxFZ


  

In case the insurance company does not participate in reinsurance, the mean value )(XE  and variance )(XD  of the insurance 

company's payments are: 
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In the case of Insurers engaging in one-parameter proportional reinsurance, the insurer's expectations are divided into two 

components, the average value of the portion retained by the insurer )(YE , and the portion transferred to the reinsurance 

company )(ZE : 


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Variance of the portion retained by the insurance company )(YD  and the portion transferred to reinsurer )(ZD : 
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Without loss of generality, we consider X , Y and Z  to be the payment at time i , then the combination of payments in the one-

parameter proportional model is shown in the following figure: 

Figure 1. Risk allocation in proportional reinsurance. 

  
(а) Risks of the insurance company (b) Risks of the company reinsurer 

 

III. MATERIALS AND METHODS 

A. Risk optimization in reinsurance. 

To mitigate risks, individuals and organizations employ a reliable approach: insurance - the transfer of risks to insurance 

companies. Nevertheless, insurance companies themselves may face risks that necessitate safeguarding. Consequently, insurance 

companies also seek protection, which takes the form of reinsurance. Reinsurance is a crucial stage in the business cycle, allowing 

for the distribution of risks and ensuring the continuity and viability of both insurance companies and the insurance market 

(Schmidli, 2002a). 
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For company insurance and reinsurance, maintaining capital above a specific threshold is crucial. The term "bankruptcy time" 

refers to the earliest point at which the capital amount falls below this threshold. The probability of this happening (bankruptcy) 

within a finite period of time [0 )t  given the initial capital x is called the probability of bankruptcy and is denoted by 𝜓(𝑥, 𝑡). 

Thus, optimizing risk in reinsurance is finding a reinsurance operation plan that minimizes the probability of bankruptcy 𝜓(𝑥, 𝑡) 

(Buhlman, 2007). 

B. Cramer equation and the Lundberg exponent R. 

1) The Cramér-Lundberg model: 

Dynamic models are distinct from static models as they account for events that unfold over time. The most basic form of such 

models encompasses two processes: the collection of insurance premiums and the payment of insurance claims. We make the 

assumption that insurance policies are received continuously and that the flow of premiums is proportional to the duration of any 

given period. Consequently, we arrive at the following dynamic model for the insurance portfolio (Hald & Schmidli, 2004). 
( )

1

( )
N t

i

i

V t x ct X


                               .           (7) 

In which, (0)x V  – Initial capital. 

ct – The insurance proceeds obtained are proportional over time with the coefficient 0>c . 

)(tN - Number of payments in time period )[0,t , is a Poisson process with parameters  . 

String ...},,{ 21 XXX   – is a random, independent, positive definite string. 

The risk process (7) is called the Cramér-Lundberg model, or the classical risk model. 

The symbol ( )F x  is the risk distribution function of 
iX , 1

k

km X M  is its moments. ( ) tX

Xg t e M is the exponential function at 

each time point of the random variable X , combined with the random variable 
1X . We see that, when ( )Xg t   , all times 

k

km X M  exist. 

2) Probability of bankruptcy: 

For insurance companies, it is important that the amount of capital ( )V t  at all times remains above a certain level, without loss 

of generality, we assume that this level is zero (Belkina et al., 2014). The problem is determining the time of bankruptcy 

inf{ 0 ( ) 0}T t V t    , that is, the earliest time in interval [0 )  when capital becomes negative. Period [0 ]T  is called the 

prosperous period of the insurance company. If 
0sup ( ) 0u t V u    for all 0t   then T   . 

Value ( ) { (0) }x t T t V x     P  is called the probability of bankruptcy in a finite time period [0 )t  with initial capital x . And 

value 

( ) lim ( ) { (0) }
t

x x t T V x


        P  

is called the probability of bankruptcy in an infinite time period [0 )  with initial capital x . It's easy to see that, ( )x t   becomes 

smaller as x  gets larger, and ( )x t   becomes larger as t  increases. 

Symbol 
iT - The time of receipt of the request, 

0 0T  . Put 
1( )i i i iY c T T X   . If we just look at the process at the time the 

request is received, it can be seen 
1

( )
k

k ii
V T x Y


  – random walk, then ( ) {inf ( ) 0}k N kx V T  P . From contingency theory, 

bankruptcy occurs if and only if 0iY M . Therefore we can see that: 

1 10 0 [ ( ) (0)] 0i

c
Y m c m V t V         M M


 

Easy to see 
1[ ( ) (0)] ( )V t V c m t  M  . Condition: 

1 0c m 
                                              

(8) 

can be understood as an excess condition of the total amount of premiums received over the total amount paid in the interval 

[0 )t , also known as the condition of having a net profit. 

If condition (8) occurs, then lim ( )x x  0 . 

For a net profit situation to occur, we set: 
1(1 ) 0c m        

Afterward 
1[ ( ) (0)] 0V t V m t  M  . Thus, risk insurance premium   is a prerequisite for the operation of insurance 

companies. 
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Cani & Thonhauser (2016) showed, with net profit conditions 
1 0c m   and (0) 0F  , probability of not going bankrupt 

( )) 1 ( )W x x   in model (7) the integral equation is met: 

0
( ) ( ) ( ) (0)

x

W x K x s W s ds W
c


                                       (9) 

with ( ) 1 ( )K t F t   called the kernel function and constant 0>(0) 1mcW  . 

Equation (9) always has a solution in the class of integrable functions. 

The solution belongs to a class (0 )C   continuous functions are given by the kernel variation limit. For example, it is enough to 

make kernels ( ) ( 0) ( )K x s K x s K x s       is limited in magnitude and has a finite number of discontinuities on the horizontal 

line t x s  . 

The equation for the probability of bankruptcy according to (9) has the form:  

0
( ) { ( ) ( ) ( )}

x

cW x W x W x y dF y      

With exponential distribution )(~ ExpX (9) can be solved clearly as follows: 

( )( ) 1 c xW x e
c

 



      

3) Correlation coefficient equation: 

Consider the classical hazard model (with Poisson distribution) with Cramer conditional assumptions to ensure the solution of the 

equation 𝑅 > 0, We have: 

)(RM X cR                                                           (10)   

With: 

)(RM X

RXeM 



0

)(xdFeRx - moment function between X  and distribution function )(xF  𝑅 is called the correlation 

coefficient, or the Lundberg exponent. 

According to (10), we have: 
Rx

x ex)(lim  CL
k  

With Cramér-Lundberg constant: 

CL
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 
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
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u
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                                        (10a)   

Then, (10) can be expressed in an approximate form as follows: 

)(x ~ CLk Rxe
, x                                             (10b)   

Example 1: Give )(~ ExpX  it mean )(xF  xe  1 . Then we have the probability of bankruptcy: 

)(x
RxeL  1 xcec )/()(    

Thus: 

CLk
1 L





c





1

1
, cR / 








1
 

Based on the Lundberg inequality, we have: 

)(x
Rxe  với 0x  

And: 

)(x ~
Rx

CLek 
 khi x  

4) The relationship between the Lundberg exponent and bankruptcy probability:  

The Lundberg exponent 𝑅 used in the theory of risk assessment to determine the probability of bankruptcy 𝜓(𝑥). In general, it is 

difficult to calculate accurately. So we will define  𝑅 based on its upper and lower limits. 

Theorem 1. Suppose tXe  M  and exist the Lundberg exponent (correlation coefficient) 𝑅  then we have the following assertion: 

(1) 1

2

2( )c m

m
R






 ;  

(2) If [0 ]suppF M  , with M   , then 
1

1 log c
M m

R


 ; 
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(3) ( ) Rxx e  ;  

(4)   xekx Rx

CL ,~)( ,  với: 

1lim ( )
( )

Rx

CL
x

X

c m
k x e

M R c



 


  


                                      (11) 

Statement (3) in Theorem 1, known as the Lundberg inequality, is widely utilized in both theoretical and applied research. The 

importance of maximizing the 𝑅 value in reinsurance becomes evident through the application of the Lundberg inequality. 

Statement (4) in Theorem 1, also referred to as the Cramér-Lundberg approximation, serves as the fundamental basis in risk 

theory. Its practical implementation yields highly favorable outcomes, which will be further explored in the algorithms section 

focusing on determining the correlation coefficient  𝑅 . This clearly illustrates that risk optimization can be achieved by maximizing 

the 𝑅 value (Belkina et al., 2014). 

 

IV. RESULT 

A. Optimize risk with a proportional reinsurance model based on maximizing the Lundberg exponent. 

In this section we consider calculating the Lundberg exponent 𝐑 according to the coefficient a of the proportional reinsurance 

model, thereby determining the probability of bankruptcy. 

Assume the distribution function is exponential )(xF xe 1 . 

From that: )(xdF dxe x  , 


1
XM  

ax

Y exF /1)(  , )(xdFY dxe
a

ax /  , 


a
Y M  

With reinsurance company, Z Xa)1(   

)1/(1)( ax

Z exF   , )(xdFZ dxe
a

ax )1/(

1




 

, 


a
Z




1
M  

Net income from reinsurance: 

     Yc ZX MM  )1()1(   

 )()1( 



 a  

According to (10) we have: 

RcxdFe YY

Rx 



0

)(  

 Radxe
a

xaR )()1(
1

1
0

)/( 


  



 















)()1(

)(





a

a

a
R  

Basic dependencies: 















)()1(

)(





a

a

a
R ,   15.0  a  

1) Case    

R
)1( 






a
, 10  a . 

Example 2: Suppose we have 1.0 , 1.0 . Then: 

R
a110

1
 , 10  a  

The results are shown as follows. 

Figure 2. Value of R according to a  with 1.0 , 1.0  
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(Source: Calculated from research results) 

2) Case    















)()1(

)(





a

a

a
R ,   15.0  a  

The optimal value of a: 

2,1a )(
)1(

)1()1(










  

Example 3: Suppose we have 1.0 , 2.0 , 1.0 . Then: 

1a  0436.0 , 2a 9564.0  

R
aa

a

10120

12
2 


  

Once you have the results of R we can easily calculate it 
CLk and 𝜓(𝑥) by formulas (10a) and (10b).  

The results are shown as follows. 

Figure 3. Value of R according to a  with 1.0 , 2.0 , 1.0  

 
(Source: Calculated from research results) 

B. Algorithm to determine the Lundberg exponent R. 

In the individual risk model, the concept of limit reinsurance is relatively straightforward. By employing a risk distribution function, 

statistical modeling can yield the desired outcome. This approach is particularly effective for exponential and uniform 

distributions. However, for other scenarios, R  maximization is achieved through approximate calculations utilizing specialized 

software. 

The Lundberg inequality suggests that the correlation coefficient is a risk measure. Hence, to reduce risk, it is important to increase 

its value. Hard and Shmidli (2004) have also researched these matters. The algorithm for maximizing the Lundberg exponent is as 

follows: 

Algorithm 1. Risk sharing method: X Y Z  , with Y aX , (1 )Z a X   

Input data and symbols: 

( ) rX

Xg r e M – Exponential moment; 

sup{ ( ) } 0Xr r g r      ; 

( )   – Risky situation; 

0( )a R  – Function at its maximum point ( )R R a  
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Order of steps:  

(1)    Original value of the equation 
1( ) (1 )

X
r mg    , if it exists; 

(2) r  , If the original value of the equation is in (1) does not exist; 

(3) 1

1

( )

0 (1 ) 1 ( )X

m

m ga
  

  



  
 ;  

(4) 00 min{ 1}a a  ;  

(5) If 00a a  , then 0 0( )R a a  .  

If the browser 
1( ) (1 )

X
r mg     It is not easy to solve, you can use the approximate method.  

We can also study the maximization of R  based on the Markov risk model. Using the Markov risk model, assumption )(~ ExpX

, mean ( ) 1 xF x e   , and the input is a Poisson process. We have a direct consequence of algorithm 2 described as follows 

Algorithm 2. Risk sharing method: X Y Z  , với Y aX , (1 )Z a X   

Input data and symbols: 

)(~ ExpX , mean ( ) 1 xF x e   ; 

( )   – Risky situation; 

0( )a R  – Function at its maximum point ( )R R a  

Order of steps:  

(1) If   , then 
0 1

a R



 , 00 1a  ;  

(2) If 0 (1 )       , then  

 
2

0

( 1 1)

1 ( 1 1)

R
a

 

   

 
   

  
     (12) 

with 
0 ( 1)a   , and 

(1 )( )

(1 )

  

 
  


 ;  

(3) If (1 )      , then 0 1a  , 
1

R



 .  

Example 4. Return to example 3. Suppose )(~ ExpX , 0 1   , 0 2   , 0 1   . We know that to maximize the R  

value, a  needs to be considered in the range 1
2

[ 1] . According to (10), we can determine 0 9564a   . 

Calculate the R  coefficient according to a : 

2

2 1

120 10

a
R

a a


 


 

The dependence on a  of R  is shown in Figure 4. With the given values of  ,   and  we can also calculate 11
12

0 9167   

. And looking at Figure 4, we see that the meaning of maximizing the R value is to keep 0 9564a   . 

 

Figure 4. The value of R  according to the scaling factor a . 

 
(Source: Calculated from research results) 

C. Risk assessment is based on maximizing the Lundberg exponent R. 

We will analyze the value R , the Cramér-Lundberg constant CLk , and the probability of bankruptcy   based on the scaling 

factor a  when the distribution function of payment sizes follows an exponential distribution. Let's assume 5.0,4.0    

as the initial capital amount in calculation units 1x . 

R=0.00911
a=0.9564R

a
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Figure 5. Express the value of R  in terms of the scaling factor a  

 
(Source: Calculated from research results) 

 

Looking at Figure 5, we see that with the distribution function of the size of insurance payments being an exponential distribution 

function, R  reaches the value max = 0.50505 at the scaling factor a = 0.36 

 

Figure 6.  Express the value of CLk in terms of the scaling factor a  

 
(Source: Calculated from research results) 

 

Figure 7. Express the value of   in terms of the scaling factor a  

 
(Source: Calculated from research results) 

 

Looking at Figure 7, we see that with the distribution function of the size of insurance payments being an exponential distribution 

function, 𝜓  reaches the value min = 0.48277 at the scale coefficient a = 0.45. 
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